Post Jobs

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态

图片 4

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。科技的发展和生活方式的变化使我们更加关注自身的健康。全天候运动追踪手机、心脏检测腕表等为代表的智能设备能够便捷地感知个体的健康状态。

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。视网膜是眼球后方一层薄薄的组织,负责收集光学图像。数以百万计的人患有视觉障碍或完全失明,老年黄斑变性则是最常见的视网膜疾病。为了提升这些患者的生活质量,研究人员正将想方设法发展可植入式的微电子视网膜假体。这些设备惯常使用半导体将光转换成电流信号,然后将信号传输给视神经。美国能源部的人造视网膜计划中,光感器件由电池供电,植入的电子设备与采集光学图像的相机之间采用无线通信。

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。柔性仿生传感器是一种用于实现仿人类感知功能的人造柔性电子器件。近年来,随着柔性电子学的发展,由于其在消费电子市场、军事、医疗健康等电子信息产业领域表现出了极大的应用潜力,发展新型可贴附、可穿戴、便携式、可折叠等柔性电子学器件的研究备受国内外研究者广泛关注,并逐渐成为当前重要的前沿研究领域之一。

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。最近Advanced Functional Materials(2016, 26,
3640)报道了我校化学化工学院高分子系和生命化学协同创新中心沈群东教授课题组的一项研究。硕士研究生韩煦和陈昕发明了一种小型、低成本的铁电高分子柔性传感器,简单地贴合在手腕等部位,能够即时采集体浅表动脉的脉搏信号,获得波形、波强、波速、节律等与心血管功能密切相关的参数;传感器也能追踪不同生理状态下,如健身和服药状态下的脉搏波形变化,评估运动或血管扩张药的效果。

人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。人的视网膜中含有多层神经元细胞,用于评估心血管系统的即时状态。最近Advanced Materials(28, 10684,
2016)报道了化学化工学院高分子系和生命化学协同创新中心的一项研究。来自沈群东教授的研究组设计了一种简洁、智能的器件,可以用作人造视网膜的一个关键组分。人的视网膜中含有多层神经元细胞,由突触相互关联。其中光感细胞含有响应不同颜色可见光的视觉色素分子。可见光诱导细胞膜的电极化,并将信号传递给其他神经细胞,再经过视神经纤维传递给大脑。鉴于此,这种新设计的核心策略是将光转换成电信号后直接转导给神经元。该仿生装置由两类功能高分子材料复合而成。一种材料是光敏性高分子,在彩色光的照明之下分子的构象发生转换,并产生机械形变。另一种材料是铁电高分子,它具有压电效应,能将复合材料的形变转换成电信号的变化。入射光经这种途径转变成电势变化,再传递给与人造视网膜紧贴的神经细胞。受激的神经细胞可进而与环境或其它细胞交换信使分子。

近日,中国科学院苏州纳米技术与纳米仿生研究所研究员张珽课题组报道了一种新型柔性可穿戴仿生触觉传感器人造仿生电子皮肤。相关研究结果已发表于最近一期《先进材料》(Advanced
Materials, 2014, 26, 1336-1342),并被选为封面文章。

传感器的核心部件是铁电高分子薄膜。这是一种特殊的功能材料,具有永久的极性,能够感受到微弱的压力而发生极性的变化。桡动脉的脉搏压力变化不仅包括心脏输出的主波,还包括次级信号,如反射波或重搏波。铁电高分子材料的极化时间在纳秒数量级,且没有记忆效应,能够精确区分主次级信号。传感器在脉压下借助薄膜自身的压电效应产生电信号,实现自供电驱动。借助半导体高分子层载流子传输能力的变化,该器件输出可读的电流信号,能耗也仅为微瓦级,用一粒扣式锂电池驱动预计可工作两年,与智能手机等相整合,非常适合于构建移动的健康检测平台。该器件具有较好的柔性和生物相容性,可紧密地贴合在腕部、手指、足腕、颈部、额头的皮肤上,在弯曲状态下的响应不受影响,未封装的器件保持了较好稳定性。

图片 1

在前期关于单壁碳纳米管超薄膜可控制备的基础上,作者利用有别于传统昂贵且复杂的微纳米加工技术,提出通过以廉价的丝绸为模板的方式,实现了具有微纳米结构薄膜的可控制备,并与自支撑单壁碳纳米管超薄膜结合,构筑了具有高灵敏度、低检出限和高稳定性的柔性仿生电子皮肤,并将其成功应用于对脉搏、语音等人体生理信号的实时快速检测,通过对人体说话时喉部肌肉群运动产生的微弱压力变化及脉搏波形变化分析,初步实现了语音识别和人体不同生理状态的准确检测,推进了可穿戴设备在语音辅助输出系统、人体健康评价和疾病前期诊断方面的应用。

该研究采集了不同测试对象或运动前后的脉搏信号,用于评估心血管系统的即时状态。对常用血管扩张药物进行的动物试验表明,药物导致脉压和心率的波动。研究的下一步目标是即时信号的远程传输,结合专门的手机App,实时收集与上传用户的健康数据,建立个性化的健康档案,实现在线评估心血管系统,从而定制合适个人的健身和心脏药物服用计划。该材料的研究曾入围2016春季Materials
Research SocietyiMatSci的二十个参展项目。

整个光电转换过程在50毫秒的时间内完成,与视网膜中的光受体细胞刺激-响应的速度相当。输出的电信号取决于光波长并正比于光刺激的强度。该器件可以抓取动态图像。结合纳米加工技术,光学检测单元可以缩微化,器件特征尺寸仅为单个光感细胞的五分之一。这些密堆积的光传感单元构成的阵列可用于分辨图形的细节特征。单个视敏感单元的光响应在入射光的方向最强,整个阵列具有构造人造复眼的潜力。该研究提供了人造视网膜的一种崭新设计思路,可获取低成本高效应、生物相容、神经元可读取、可植入的器件,其突出特点是无需电池驱动,能够实现自供能。

随后,Wiley-VCH主办的Materials View China对该研究进行了相关报道。

该研究得到了国家自然科学基金项目和长江学者和创新团队发展计划的资助。

这项工作是和高分子系谌东中教授、现代工程与应用科学学院葛海雄教授密切合作完成,第一作者为硕士研究生陈昕。研究得到了国家自然科学基金、长江学者和创新团队发展计划的资助。

该工作得到了国家自然科学基金委项目、港澳台国际合作项目及江苏省科技厅项目的经费支持,同时得到了苏州纳米所印刷电子部的支持。

图片 2

沈群东教授研究组近年来专注于铁电高分子柔性电子器件研究,包括非侵入性动态诊断心血管系统的传感器(Adv.
Funct. Mater. 26, 3640,2016)和超高密度数据存储器(Adv. Funct. Mater.
23, 3124,2013)等。

图片 3

(化学化工学院 科学技术处)

图片 4

(化学化工学院 科学技术处)

发表评论

电子邮件地址不会被公开。 必填项已用*标注

相关文章

网站地图xml地图